This is a description of the kernel configuration options that relate to security, and an explanation of what they do, and how to use them.
As the kernel controls your computer's networking, it is important that the kernel is very secure, and the kernel itself won't be compromised. To prevent some of the latest networkworking attacks, you should try and keep your kernel version current. You can find new kernels at ftp://ftp.kernel.org.
This option should be enabled. Source routed frames contain the entire path to their destination inside of the packet. This means that routers the packet goes thru does not need to inspect the packet, and just forwards it on. This could lead to data entering your system that may be a potential exploit.
This option is necessary if you are going to configure your machine as a firewall, do masquerading, or wish to protect your dial-up workstation from someone entering via your PPP dial-up interface.
If you enable IP forwarding, your Linux box essentially becomes a router. If your machine is on a network, you could be forwarding data from one network to another, and perhaps subverting a firewall that was put there to prevent this from happening. Normal dial-up users will want to disable this, and other users should concentrate on the security implications of doing this. Firewall machines will want this enabled, and used in conjunction with firewall software.
You can enable and disable IP forwarding dynamically using the following command:
root# echo 1 > /proc/sys/net/ipv4/ip_forward
and disable it with the command:
root# echo 0 > /proc/sys/net/ipv4/ip_forward
This file (and many other files in /proc) will always appear to be
zero length, but in fact aren't. This is a newly introduced kernel
feature, so be sure your using a kernel 2.0.33 or later.
This option gives you information about packets your firewall received, like sender, receipient, port, etc.
Generally this option is disabled, but if you are building a firewall or a masquerading host, you will want to enable it. When data is sent from one host to another, it does not always get sent as a single packet of data, but rather it is fragmented into several pieces. The problem with this is that the port numbers are only stored in the first fragment. This means that someone can insert information into the remaining packets for your connection that aren't supposed to be there.
SYN Attack is a denial of service (DoS) attack that consumes all the resources on your machine, forcing you to reboot. We can't think of a reason you wouldn't normally enable this.
This is an option that is available in the 2.1 kernel series that will sign NCP packets for stronger security. Normally you can leave it off, but it is there if you do need it.
This is a really neat option that allows you to analyze the first 128 bytes of the packets in a userspace program, to determine if you would like to accept or deny the packet, based on its validity.
There are a few block and character devices available on Linux that will also help you with security.
The two devices /dev/random and /dev/urandom are provided by the kernel to retrieve random data at any time.
Both /dev/random and /dev/urandom should be secure enough to use in generating PGP keys, SSH challenges, and other applications where secure random numbers are requisite. Attackers should be unable to predict the next number given any initial sequence of numbers from these sources. There has been a lot of effort put in to ensuring that the numbers you get from these sources are random in every sense of the word random.
The only difference is that /dev/random runs out of random bytes and it makes you wait for more to be accumulated. Note that on some systems, it can block for a long time waiting for new user-generated entry to be entered into the system. So you have to use care before using /dev/random. (Perhaps the best thing to do is to use it when you're generating sensitive keying information, and you tell the user to pound on the keyboard repeatedly until you print out "OK, enough".)
/dev/random is high quality entropy, generated from measuring the inter-interrupt times etc. It blocks until enough bits of random data are available.
/dev/urandom is similar, but when the store of entropy is running low, it'll return a cryptographically strong hash of what there is. This isn't as secure, but it's enough for most applications.
You might read from the devices using something like:
root# head -c 6 /dev/urandom | uuencode -
This will print six random characters on the console, suitable for
password generation.
See /usr/src/linux/drivers/char/random.c for a description of the algorithm.
Thanks to Theodore Y. Ts'o, Jon Lewis, and others from Linux-kernel for helping me (Dave) with this.